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Abstract. Two scattering models are investigated in quasi-ballistic quantum point contact
systems; a model with a few point scattering centres versus the Anderson model with on-site
disorder. An exact, recursive Green’s function technique is used to obtain magneto-transport
quantities such as the conductance fluctuation amplitude and the correlation function. In the
quasi-ballistic regime, the two models are not equivalent. The Anderson model can reproduce
the same fluctuation amplitude as the ‘few-scatterer’ model, but fails to reproduce the correlation
field. When the number of impurities in the ‘few-scatterer’ case is increased towards the
diffusive regime, the two models agree well both on the fluctuation amplitude and correlation
field. Further, we find that the correlation field in the Anderson model depends dramatically on
disorder strength, when moving from the ballistic to the diffusive regime. The importance of
the impurity positions in the ‘few-scatterer’ model is also investigated.

1. Introduction

Electron transport in mesoscopic systems has been intensely investigated during the past
decade. One of the issues that has received much attention is conductance fluctuations.
These fluctuations, which result from interference between different electron paths, have
been observed in a variety of systems, such as metallic rings and wires [1, 2]. In the
diffusive transport regime, where there exists an established theory, these fluctuations
are called ‘universal’ (UCFs) because their amplitude is always of the order ofe2/h,
independent of sample size or degree of disorder [3–5]. Recently, attention has been turned
towardsballistic systems. Experiments have been performed on ballistic metallic point
contacts [6–10], where conductance fluctuations of non-universal amplitude were measured.
Theoretical calculations of conductance fluctuations in the quasi-ballistic regime have also
been presented [7, 11–14].

In the quasi-ballistic regime, only a few impurities typically are present in the active
phase coherent region. However, there are several examples in the literature where transport
properties in the quasi-ballistic regime are calculated using the Anderson model with on-site
disorder [11, 13, 14]. In the Anderson model, the entire system is discretized on a lattice,
and disorder is incorporated by letting the energy of each lattice site vary randomly. The
potential energy landscape is therefore a dense population of ‘spikes’, where the amplitude
of the site energy variation reflects the disorder strength. Although this model has been
very useful when describing localized and diffusive systems, it is indeed questionable to
what extent it reflects the true nature of quasi-ballistic systems.
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Figure 1. The inset shows the microstructure model geometry: a smooth two-dimensional
quantum point contact connected to long leads. The positions of the few localized scatterers are
marked with asterixes. The plot shows conductance as a function of Fermi energy, atB = 0,
for three different impurity configurations, and the ‘clean’ case without impurities. In the case
with two remote scatterers (rr), conductance fluctuations occur, while the two near scatterers
(nn) act mainly as blockers, reducing the conductance. The situation with two near and two
remote scatterers (nnrr) results both in strong conductance fluctuations and a reduction of the
conductance.

In the present work, we compare the traditional Anderson model with a model including
only a few localized scatterers. Our two-dimensional geometry consists of a smooth quantum
point contact connected to long leads. A numerical calculation is performed to obtain
magneto-transport properties such as the conductance fluctuation amplitudeδg and the
correlation functionF(1B). In particular, we make connection to the work of [7], where
non-universal conductance fluctuations in a ballistic metallic point contact were measured
and successfully described by a theory including a few localized scatterers. We find that
although the Anderson model can give the same result as the ‘few-scatterer’ model for
the conductance fluctuation amplitude, it fails to reproduce the correlation fieldBc in the
quasi-ballistic regime. However, when the number of impurities in the ‘few-scatterer’ case
is increased towards the diffusive regime, the two models agree well on both the fluctuation
amplitude and correlation field. We also investigate the importance of the positions of the
few localized scatterers, following the concepts ofnear and remotescatterers of [7]. We
show that ‘near scatterers’, i.e. those located close to the orifice, act as blockers. They
reduce the overall conductance significantly but do not lead to conductance fluctuations.
The remote scatterers, on the other hand, result in strong conductance fluctuations but have
a weak influence on the overall conductance.

2. The model

The microstructure geometry considered is a two-dimensional smooth quantum point contact
connected to long leads, as shown in the inset of figure 1. We take the geometry to be
smooth in order to avoid resonances and other interference effects resulting from sharp
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geometrical features, an effect common in many numerical calculations. However, since
our smooth geometry is discretized on a lattice, there is inevitably a certain amount of
‘surface roughness’ present, but the effect is found to be negligible for the energy range we
consider.

The incorporation of long leads connected to the quantum point contact is an important
issue [15–17]. In real experiments, any ballistic constriction must be connected to
macroscopic reservoirs. If the temperature is sufficiently low, the phase coherent region
will contain both the constriction and part of the leads, and it is important to treat the
constriction and the contacts as one single system [11]. We include the long leads in our
system, and find that impurities that are far from the constriction have a strong influence
on the transport characteristics.

The quantum point contact geometry of figure 1 is, in our treatment, discretized on a
square lattice. The laterally confining potential is introduced by letting the site energy
be very large in regions inaccessible to the electrons (hard-wall boundary conditions).
Throughout the paper, we will measure all energies in units of the tight-binding hopping
energy|V | = h̄2/2m∗a2 wherea is the lattice constant. All lengths will be measured in
units of the lattice constant, i.e. number of sites. If the lattice constant is much smaller than
the Fermi wavelength,λF /a � 1, we are in the parabolic part of the energy band, and the
lattice model is assumed to give a good description of the true continuum system. We have
chosen the Fermi energy to beEF = 0.98|V | (if not specified elsewise), which corresponds
to the ratioλF /a = 6.34. Our model is thus expected to describe a continuum system quite
well. The chosen Fermi energy value corresponds to three propagating modes through the
narrow part of the constriction.

The overall length and width of the geometry is denoted byL and W respectively,
and the length and width of the smooth constriction is denoted byLc andWc. The width
dependenceD(x) of the constriction is, with thex-coordinate being zero at the centre of
the constriction,

D(x) = W + (Wc − W) exp(−4x2/L2
c). (1)

The parameter values are taken to beL = 200,W = 20, Lc = 15, andWc = 10.
When modelling the ‘few-scatterer’ situation, we let the site energy be very large at the

lattice sites corresponding to the positions of the scatterers (marked with asterixes in the
inset of figure 1). This approach is equivalent to using a delta-function scattering potential.
In the Anderson model, on the other hand,eachsite energy is taken to vary randomly (with
a uniform distribution), within an energy interval±u/2, whereu is the disorder strength.

The calculations are carried out using the recursive single-particle Green’s function
technique [18–22]. Relations between the Green’s functions and theS matrix of the system
are employed [23], which allow the conductance to be calculated from the generalized multi-
channel Landauer formula. The presence of a magnetic field, perpendicular to the plane of
the constriction, is incorporated by means of a Peı̀erls’ phase factor. Throughout the paper,
the magnetic field strength will be measured in units of the frustration,f = eBa2/hc, i.e.
flux per unit cell. All calculations are performed in the weak-B-field limit, so the cyclotron
radius is considerably larger than the narrowest part of the constriction. Also, care has
been taken to exclude artifacts due to the underlying lattice, which occur when aB-field is
present. In the cases where statistical averaging is performed, we average over theB-field
range in the ‘few-scatterer’ model, and over 100 different disorder configurations in the
Anderson model. According to the ergodic hypothesis, these two averaging procedures are
equivalent. Finally, to ensure numerical reliability of our computational scheme, we require
that current conservation holds to a tolerance of 1× 10−6.
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3. Results and discussion

The aim of this work is to compare the traditional Anderson model with a model including
a few localized scatterers. In spite of the fact that the impurity distribution in the quasi-
ballistic regime has a much closer resemblance to a model with a few delta-function type
scatterers than the Anderson model, the latter recently has been used in several works
[11, 13, 14] to describe quasi-ballistic transport.

In our investigation, we make connection to the work of [7], where a theory based
on a few localized scatterers successfully described the experimental data. In that work,
non-universal conductance fluctuations, two orders of magnitude smaller thane2/h, were
measured as a function of magnetic field or voltage in a metallic 3D ballistic point
contact. The authors presented a wave-optical description of the interference, showing
that contributions from specific electron trajectories were responsible for the fluctuations
observed. It was shown that acombined interferenceeffect reproduced the data very well;
one wave is confined in a region near the contact while the other is extended far into the
electrode. Therefore, a model with a few localized scatterers in appropriate positions is
expected to give rise to interference paths similar to those considered in that model.

We have adopted the concept ofnear and remotescatterers, and consider a situation
with two near and two remote scatterers described by delta-function type potentials, as
shown in the inset of figure 1. This is a model that closely corresponds to that of [7].
However, we perform a numerical calculation, taking into account scattering events of all
orders, while the analytical calculation of [7] is based on perturbation theory. It is therefore
also of interest to compare these two approaches.

3.1. The ‘few-scatterer’ model

We start by investigating the ‘few-scatterer’ model, where the positions of the impurities
are as shown in the inset of figure 1. The conductance as a function of Fermi energy (or
equivalently the gate voltage) atB = 0 is plotted in figure 1. In the ‘clean’ case, i.e. without
impurities, the conductance steps are well defined and slightly rounded. The rounding of
the steps is expected in a smooth geometry like this, due to quantum mechanical tunnelling
through the thin top part of the sub-band potential each time a new mode threshold is
approached. First, we consider the case when only the two ‘remote’ scatterers are present,
labelled with the abbreviation ‘rr’. Conductance fluctuations are seen to be superimposed on
the well preserved quantized steps, while the total conductance is only slightly reduced. The
fluctuations result from trajectories involving the remote scatterers and the orifice boundary.

In the case of only two ‘near’ scatterers, denoted by ‘nn’, a dramatic difference occurs:
the overall conductance is strongly reduced and conductance fluctuations are not visible. In
other words, the near scatterers act as ‘blockers’, reflecting a large fraction of the incoming
electrons. The conductance reduction is in agreement with known results for quasi-ballistic
point contacts; i.e. the relative reduction is proportional to the relative area of the orifice
being ‘shadowed’ by the scatterers. In the present model situation, with strong scatterers
close to the orifice and a small number of propagating modes, the ‘shadowing’ effect is very
strong. Further, since the electrons are reflected in very close proximity to the orifice, the
typical correlation energies for interference fluctuations are so large that interference effects
are not visible here.

Finally, we consider the case with two nearand two remote scatterers, denoted by
‘nnrr’. The result is essentially a superposition of the two previous cases; the near
scatterers still act as blockers, reducing the overall conductance, but the presence of the
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remote scatterers introduces strong conductance fluctuations. These fluctuations result from
scattering trajectories involving both the remote and the near scatterers. As we will see later,
the presence of the near scatterers plays another important role, affecting the amplitude of
the fluctuations. Of course, scattering at the orifice boundary also plays a significant role
here.

Figure 2. Conductance as a function of weak magnetic field, for the three different impurity
configurations. The fluctuation characteristics for each impurity configuration are analogous to
those of figure 1.

In figure 2, we plot the conductance for the same three impurity configurations, the
‘rr’, ‘nn’, and ‘nnrr’ cases, as a function of magnetic field. The Fermi energy is 0.98|V |,
so we have three propagating modes through the orifice and are in the parabolic part of
the band. The flux per unit cell is in the range 0< f < 0.02, which corresponds to the
weak-B-field limit. It is seen that the fluctuation characteristics are equivalent to the case
of figure 1 where the Fermi energy was varied, which is as expected. The configurations
which contain remote scatterers exhibit conductance fluctuations, while the case with only
near scatterers mainly reduces the conductance. In the two cases where near scatterers are
present, the conductance is significantly reduced.

We have also calculated the average conductance〈g〉 and the fluctuation amplitude
δg for the two impurity configurations ‘rr’ and ‘nnrr’. The root mean square fluctuation
amplitude is defined asδg ≡ 〈(g − 〈g〉)2〉1/2, where the brackets denote averaging, here
taken over theB-field interval. The result is the following: ‘rr’,〈g〉 = 2.95, δg = 0.044;
‘nnrr’, 〈g〉 = 2.46, δg = 0.078. Thus, the addition of near scatterers to the remote scatterer
case increases the fluctuation amplitude by a factor of approximately two. This result is in
good qualitative agreement with that of [7], where it was found that a near trajectory causes
a significant enhancement of the fluctuations. We wish to point out that only qualitative
comparisons can be made with the results of [7], since in the experimental situation the
number of modes is of the order of 103, while in our model we have only three propagating
modes. Further, the experiment is carried out on a strictly 3D metallic point contact, while
the effective dimensionality of our model is somewhere between 2D and 1D.
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Figure 3. Conductance fluctuation amplitudeδg versus disorder strength, for theB-field
strengthsf = 0 andf = 0.02, in the Anderson model with on-site disorder. The fluctuation
amplitude increases monotonically in the quasi-ballistic regime from zero up to a saturation
value, and fluctuates around a constant value in the diffusive (universal) regime.

3.2. The Anderson disorder model

Next we turn our attention to the Anderson model with on-site disorder. We use the same
geometry as in figure 1 (inset), but here introduce the disorder potential on each site on
the lattice. In figure 3 we show the conductance fluctuation amplitudeδg versus disorder
strengthu, for zero flux and forf = 0.02. The disorder strength varies from zero up to
u = 2. It is seen that the fluctuation amplitude increases monotonically from zero up to
a saturation value, the saturation indicating that we have reached the universal (diffusive)
regime. The crossover from the ballistic to the diffusive regime has been investigated in
detail elsewhere [14], so we do not go into detail here.

The well known result that a magnetic field suppresses conductance fluctuations in
the diffusive regime is clearly seen as the difference between the two curves of figure 3.
Interestingly, the curves cross at disorder strengthu = 1.5. In other words, the magnetic
field suppresses the fluctuations in the quasi-ballistic and diffusive regime, but enhances
them when the localized regime is entered. The same effect has been observed also by the
authors of [12].

It is useful to relate the disorder parameteru to the elastic scattering lengthl, and in a
2D system we have

l = (6λ3
F /π3a2)(EF /u)2. (2)

From this relation, the disorder strengthu = 0.5 corresponds tol ≈ 170 andu = 1.5
corresponds tol ≈ 20. The total length of our system isL = 200, so we see that the
fluctuation amplitude increases only while we are in the quasi-ballistic regime, which can
be defined as the regime wherel > L.

The almost linear relation between fluctuation amplitude and disorder strength in the
quasi-ballistic regime implies that, by choosing the right disorder strength, the Anderson
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model can reproduce any fluctuation amplitude smaller than the universal value. To make
connection to the ‘few-scatterer’ model we note that the fluctuation amplitudeδg = 0.078,
obtained above for the ‘nnrr’ case, corresponds to the disorder strengthu = 0.3 in the
Anderson model. The next issue to investigate is how well the two different scattering
models agree on estimating the typical fluctuation period.

3.3. Comparison of correlation functions

An important quantity for characterizing conductance fluctuations is the correlation function
F(1B), defined as

F(1B) = 〈(g(B) − 〈g(B)〉)(g(B + 1B) − 〈g(B + 1B)〉)〉 (3)

whereg is the conductance and the brackets denote ensemble averaging. The correlation
field Bc is defined as the half-width of the correlation function,F(Bc) = F(0)/2, and
corresponds to the field strength required in order to increase the enclosed flux in a typical
phase coherent area by one quantum. It can be loosely interpreted as the typical conductance
fluctuation period. In the following notation we will replace1B by 1f , since we measure
the magnetic field strength in terms of the frustrationf .

Figure 4. The normalized correlation functionF(1f ) for three different cases: the ‘rr’ and
the ‘nnrr’ impurity configurations in the ‘few-scatterer’ model, and the Anderson model with
disorder strengthu = 0.3. The ‘rr’ and ‘nnrr’ configurations give the same correlation field,
while the Anderson model correlation field is approximately twice as large.

In figure 4, we have calculated the normalized correlation functionF(1f ) for three
different cases: the ‘rr’ and the ‘nnrr’ impurity configurations in the ‘few-scatterer’ model,
and the Anderson model with disorder strengthu = 0.3. First of all, we see that the ‘rr’ and
‘nnrr’ configurations give almost exactly the same correlation fieldBc. This is supported
by [7], where it was found that the correlation field is mainly governed by the remote
scatterers. It does indeed seem natural that, in the quasi-ballistic regime, the positions of
the remote scatterers define the typical trajectory size. We also note that the line shape of
the ‘nnrr’ correlation function, being linear also near1f = 0, is in good agreement with the
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experimental data of [7], while the Anderson model correlation function line shape is closer
to the flat Lorentzian type. However, the correlation function for the Anderson model with
disorder strengthu = 0.3 (to matchδg = 0.078 in the ‘nnrr’ case), produces a correlation
field that is approximately a factor of two larger than the ‘few-scatterers’ case. A possible
explanation of this will be discussed below.

Figure 5. The normalized correlation functionF(1f ) for three different disorder strength values
in the Anderson model. It is seen that the correlation field decreases with increasing disorder
strength. The lineshape near1f = 0 is of the flat Lorentzian type.

Finally, we are interested in calculating correlation functions for the Anderson model
with different degrees of disorder. In figure 5, three correlation functions are shown, for dis-
order strength values ofu = 0.3, 0.8, and 1.3. The corresponding elastic scattering lengths,
calculated from (2), arel = 526, 74, and 28 sites. The total length of our system isL = 200
sites. It is clearly seen that the correlation field decreases with increasing disorder strength.
The line shape is similar for the different disorder strengths, being of the flat Lorentzian type
near1f = 0. We note that the shoulder is present, to differing degrees, in all three cases.

In figure 6, we show the correlation fieldBc as a function of disorder strength, over the
interval 0.3 < u < 2. The general trend is the same as indicated in figure 5: the correlation
field decreases with increasing disorder strength. Interestingly, there is a significant drop
occurring at disorder strengthu ≈ 0.8, where the correlation field falls to approximately
half of its value. After this sudden drop, there is a continuous decrease towards zero.

The decrease of correlation field with increasing disorder stength in the Anderson
model can be explained as follows. The correlation field is inversely proportional to the
(phase-coherent) area covered by closed electron trajectories. For weak disorder strengths,
corresponding to the quasi-ballistic regime, the elastic scattering length is comparable to
the system size. In the absence of a magnetic field, the probability of electron trajectories
forming closed loops is therefore very small. However, for the magnetic field strength
considered here, a weak trajectory bending occurs, making closed loops possible and thus
leading to interference effects. This type of trajectory covers only a small part of the
total system, and therefore the corresponding correlation field is large. However, when
the disorder strength is increased towards the diffusive regime, the elastic scattering length
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Figure 6. The correlation fieldBc as a function of disorder strength in the Anderson model.
The correlation field decreases with increasing disorder strength, and a significant drop occurs
at disorder strengthu = 0.8.

becomes considerably smaller than the system size. The number of closed loops is then
large, and the corresponding trajectory covers a large part of the total system. This diffusive
motion results in smaller correlation fields.

The above consideration also explains why the Anderson model, in the quasi-ballistic
limit, produces a correlation field that is much larger than in the ‘few-scatterer’ case
(figure 4). In the ‘few-scatterer’ case considered, the impurities are positioned so that
a closed trajectory, covering a large part of the system, has a high probability of being
realized. Therefore, the resulting correlation field will be considerably smaller than one that
corresponds to the quasi-ballistic Anderson model, as discussed above.

It is interesting to compare the above dependence with the results of [7]. In that work,
where only a few scatterers were considered, it was found that the correlation fieldBc is
given byBc ≈ (h/e)/ l2. In other words, the elastic scattering lengthl defines the typical
trajectory size. If we apply this result to the Anderson model, using (2), we find that the
correlation field should depend on disorder strength asBc ∼ u4. This is certainly not in
agreement with our results, even in the quasi-ballistic regime. We therefore conclude that
the inelastic scattering length in the Anderson model, taken in the quasi-ballistic regime, is
not a good measure of the typical trajectory size.

3.4. The ‘few-scatterer’ case with more impurities

So far we have, in the ‘few-scatterer’ case, considered a situation that does not allow us
to introduce the concept of an elastic scattering length, since the number of impurities is
very low. However, if the number of impurities is increased, an elastic scattering length
can be defined, and we can thus make a more quantitative comparison with the Anderson
model. We therefore now consider a situation with 15 randomly positioned impurities across
the entire confinement of figure 1 (inset), the impurities being defined exactly in the same
way as in the previous ‘few-scatterer’ case. The elastic scattering length can in this case
be roughly estimated asl ≈ 20 sites. In the Anderson model, an elastic scattering length
l ≈ 20 sites can be obtained, taking the disorder strength value to beu = 1.5 (using (2)).
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Figure 7. Conductance as a function of weak magnetic field. The case of 15 randomly positioned
impurities is compared to the Anderson model with on-site disorder. The parameters are choosen
so that the inelastic scattering length is the same in both models,l ≈ 20 sites. The fluctuation
amplitudes are found to beδg = 0.20 for the case with 15 impurities andδg ≈ 0.25 for the
Anderson model.

In figure 7, we plot the conductance as a function of magnetic field (weak-B-field limit),
comparing the case with 15 impurities to the on-site disorder Anderson model with disorder
strengthu = 1.5. It is seen that the aperiodic fluctuations are similar in character, but
the average conductance is significantly smaller in the Anderson model case. We have
calculated the fluctuation amplitudeδg in the case of 15 impurities by averaging over the
B-field range of figure 7, with the resultδg = 0.20. For the Anderson model case, the
fluctuation amplitude can be obtained from figure 3, whereδg versus disorder strengthu was
plotted. We find that the disorder strengthu = 1.5 corresponds toδg ≈ 0.25. Obviously,
the two different scattering models give roughly the same fluctuation amplitude, as long as
the corresponding elastic scattering length is the same.

In order to make the comparison complete, we must also investigate the correlation
functions. In figure 8, we show the correlation functionsF(1f ) for the case with 15
impurities and the Anderson model with on-site disorder,u = 1.5. The agreement is very
good for small1f , almost down toF = 1/2. However, the line shape near1f = 0
is different for the two models; the Anderson model correlation function is of the flat
Lorentzian type, while the ‘few-scatterer’ model correlation function is nearly linear. For
larger 1f , the Anderson model correlation function continues linearly down to smaller
values, while the ‘few-scatterer’ model correlation function exhibits a shoulder before a
further decrease.

4. Conclusions

We have compared the traditional Anderson disorder model to a model including only a
few localized scatterers. The ‘few-scatterer’ model is assumed to be more realistic when
modelling the quasi-ballistic regime, and has successfully been used to describe experiments
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Figure 8. The normalized correlation functionF(1f ) for two situations: 15 randomly
positioned impurities and the Anderson model with on-site disorder. The inelastic scattering
length is the same in both models,l ≈ 20 sites. It is seen that the two models agree quite well
on estimating the correlation field.

[7]. We have performed an exact, numerical calculation of magneto-transport properties,
considering a smooth quantum point contact geometry connected to long leads.

We find that the Anderson model can, with appropriately chosen disorder strength,
reproduce any conductance fluctuation amplitudeδg. Therefore, it can reproduce the very
small fluctuation amplitudes found in quasi-ballistic systems. However, it does not give the
same correlation fieldBc or correlation function line shape as the ‘few-scatterer’ model in the
quasi-ballistic regime. The reason is that the typical trajectory sizes are different in the two
models. We also find that the correlation field in the Anderson model depends dramatically
on disorder strength, when moving from the ballistic to the diffusive regime. Further we
find that, when the number of impurities in the ‘few-scatterer’ case is increased towards
the diffusive regime, the two models agree quite well both on the fluctuation amplitude and
correlation field. We therefore conclude that the Anderson disorder model is not suitable
for a complete description of conductance fluctuations in the quasi-ballistic regime.

We have also investigated the importance of the impurity positions in the ‘few-
scatterer’ model. Impurities located near the orifice act mainly as ‘blockers’, reducing the
overall conductance, while the remotely located impurities lead to significant conductance
fluctuations. The presence of near scatterers enhances the fluctuation amplitude by a factor
of two, a result that supports the theory of [7], where it was found that a combination of
near and remote interference trajectories accurately describes the experimental situation.

Finally, it is worthwhile to speculate on the nature of the difference between the two
correlation functions resulting from the two models, and recent experimental observations
of fluctuations in ballistic quantum dots [24, 25]. In these experiments, a transition between
regular and chaotic behaviour is assumed to have taken place, with this transition being
signalled by the change in the weak-localization line shape. This change has been suggested
in chaotic and regular dot systems [26, 27]. However, this behaviour has also been seen in
single quantum point contacts [28, 29], a system quite different from the quantum dot, and
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similar to the microstructure studied here. Dominance of a quantum dot by a single quantum
point contact is well known [30], which suggests that the weak-localization behaviour, and
its changes, might well be associated with the contacts rather than the central region of the
dot [31]. Indeed, the strong similarity of the magnetic field behaviour of the correlation
functions found here to that observed both in dots and single quantum point contacts suggests
that a much deeper tie between the structures might well exist.
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